Akt1 regulates vascular smooth muscle cell apoptosis through FoxO3a and Apaf1 and protects against arterial remodeling and atherosclerosis.
نویسندگان
چکیده
OBJECTIVE Vascular smooth muscle cell (VSMC) apoptosis occurs at low levels in atherosclerotic plaques and in vessel remodeling; however, the consequences and mediators of these levels are not known. Akt1 protects against VSMC apoptosis largely through inactivating target proteins such as forkhead class O transcription factor 3a (FoxO3a), but Akt1 signaling is reduced and FoxO3a activity is increased in human atherosclerosis. We therefore sought to determine whether inhibition of VSMC apoptosis via Akt1 activation regulates vessel remodeling and atherogenesis and to identify FoxO3a target proteins that mediate VSMC apoptosis. APPROACH AND RESULTS We generated mice that express an Akt1 protein that can be activated specifically in arterial VSMCs. Akt1 activation did not affect normal arteries, but inhibited VSMC apoptosis and negative remodeling after carotid ligation, indicating that VSMC apoptosis is a major determinant of vessel caliber after changes in flow. Akt1 activation inhibited VSMC apoptosis during atherogenesis and increased relative fibrous cap area in plaques. Microarray studies identified multiple FoxO3a-regulated genes involved in VSMC apoptosis, including apoptotic protease activating factor 1 as a novel target. Apoptotic protease activating factor 1 mediated the proapoptotic activity of FoxO3a, was increased in human atherosclerosis, but reduced by Akt1 activity in vivo. CONCLUSIONS Akt1 is a major regulator of VSMC survival in vivo during vessel remodeling and atherogenesis, mediated in large part through inhibition of FoxO3a and its downstream genes, including apoptotic protease activating factor 1. Our data suggest that even the low-level VSMC apoptosis seen during changes in flow determines vessel wall structure and promotes fibrous cap thinning during atherogenesis.
منابع مشابه
FOXO3a (Forkhead Transcription Factor O Subfamily Member 3a) Links Vascular Smooth Muscle Cell Apoptosis, Matrix Breakdown, Atherosclerosis, and Vascular Remodeling Through a Novel Pathway Involving MMP13 (Matrix Metalloproteinase 13)
OBJECTIVE Vascular smooth muscle cell (VSMC) apoptosis accelerates atherosclerosis and promotes breakdown of the extracellular matrix, but the mechanistic links between these 2 processes are unknown. The forkhead protein FOXO3a (forkhead transcription factor O subfamily member 3a) is activated in human atherosclerosis and induces a range of proapoptotic and other transcriptional targets. We, th...
متن کاملEffect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملVascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis.
BACKGROUND Vascular smooth muscle cells (VSMCs) in human atherosclerosis manifest extensive DNA damage and activation of the DNA damage response, a pathway that coordinates cell cycle arrest and DNA repair, or can trigger apoptosis or cell senescence. Sirtuin 1 deacetylase (SIRT1) regulates cell ageing and energy metabolism and regulates the DNA damage response through multiple targets. However...
متن کاملGenetic Evidence Supports a Major Role for Akt1 in VSMCs During Atherogenesis.
RATIONALE Coronary artery disease, the direct result of atherosclerosis, is the most common cause of death in Western societies. Vascular smooth muscle cell (VSMC) apoptosis occurs during the progression of atherosclerosis and in advanced lesions and promotes plaque necrosis, a common feature of high-risk/vulnerable atherosclerotic plaques. Akt1, a serine/threonine protein kinase, regulates sev...
متن کاملDeficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension.
Pulmonary vascular remodeling, mainly attributable to enhanced pulmonary arterial smooth muscle cell proliferation and migration, is a major cause for elevated pulmonary vascular resistance and pulmonary arterial pressure in patients with pulmonary hypertension. The signaling cascade through Akt, comprised of three isoforms (Akt1-3) with distinct but overlapping functions, is involved in regula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 34 11 شماره
صفحات -
تاریخ انتشار 2014